B3B053

Reg. No.____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017

Course Code: EC 201

Course Name: NETWORK THEORY (AE,EC)

Max. Marks: 100

Duration:3 Hours

(2)

PART A

Question No. 1 is compulsory.

a) State Kirchhoff's current law. (2)
 b) Find the current in 100Ω resistor using nodal analysis. (5)

c) State super position theorem.

d) Using super position theorem find the voltage across $(2+j5)\Omega$ impedance for the network shown. (6)

2. a) Differentiate between (i) tree and co tree (ii) links and twigs. (2)
b) Determine V_a and V_b, from the given circuit. (7)

(6)

(4)

(4)

c) In the network find the voltage across the 4Ω resistor.

OR

- 3. a) State and Prove maximum Power transfer theorem. (3) b) Determine the maximum power delivered to the load. (4)

PART B

Question No. 4 is compulsory.

4. a) In the network shown the switch is moved from a to b (steady state was achieved in position a). Find v(f). (6)

(4)

b) List any 5 properties of transfer functions. (5)

c) In the network shown, plot poles and zeros function of (I_0/I_i)

5. a) Find inverse Laplace transform of (2s+1)/(s²+2)(s+1). (4)
b) Solvey"-y= t, y(0)=1, y'(0)=0 (5)
c) For the network shown find the current i(t) when the switch is changed from

c) For the network shown , find the current i(t) when the switch is changed from position 1 to 2 at t=0

OR

(10)

(6)

6. a) Obtain the Z₁₁, V₂/I₁, V₂/V₁ of the following network. $\begin{array}{c}
I_{1} \\
I_{1} \\
I_{2} \\
I_{2}$

Page 3 of 5

B3B163

b) Plot the magnitude and phase response for the transfer function, V_2/V_1 of an RC two port network (Integrator) (5)

PART C

Question No. 7 is compulsory.

7. a) Find the transmission parameters for the two port network shown. (8)

b) Two identical sections of a network shown in the figure are connected in series. obtain the Z parameters of the combination and verify by direct calculation (8)

c) Define resonance. Find the condition for resonance in a series RLC circuit (4)

8. a) For the network shown ,derive the open circuit admittance parameters and draw its equivalent circuit (10)

b)Express Z parameters in terms of hybrid and inverse hybrid parameters. (10)

OR

9. a) A series RLC circuit has $R=25\Omega$, L=0.41H, C=0.01µF. calculate the resonant frequency. If 1V source of the same frequency as the resonant resonant frequency is

B

applied to this circuit, calculate the frequencies at which the voltage across L and Cis maximum. Calculate the voltages. (8)

b) Consider a single tuned circuit. Determine the resonant frequency, the output voltage at resonance and the maximum output voltage. Assume $Rs \gg \omega_r L_1$ and K=0.9 (12)
